A unique multidrug nanomedicine made of squalenoyl-gemcitabine and alkyl-lysophospholipid edelfosine
C. Rodríguez-Nogales, V. Sebastián, S. Irusta, D. Desmaële, P. Couvreur, MJ. Blanco-Prieto*


Among anticancer nanomedicines, squalenoyl nanocomposites have obtained encouraging outcomes in a great variety of tumors. The prodrug squalenoyl-gemcitabine has been chosen in this study to construct a novel multidrug nanosystem in combination with edelfosine, an alkyl-lysophopholipid with proven anticancer activity. Given their amphiphilic nature, it was hypothesized that both anticancer compounds, with complementary molecular targets, could lead to the formation of a new multitherapy nanomedicine. Nanoassemblies were formulated by the nanoprecipitation method and characterized by dynamic light scattering, transmission electron microscopy and X-ray photoelectron spectroscopy. Because free edelfosine is highly hemolytic, hemolysis experiments were performed using human blood erythrocytes and nanoassemblies efficacy was evaluated in a patient-derived metastatic pediatric osteosarcoma cell line. It was observed that these molecules spontaneously self-assembled as stable and monodisperse nanoassemblies of 51 ± 1 nm in a surfactant/polymer free-aqueous suspension. Compared to squalenoyl-gemcitabine nanoassemblies, the combination of squalenoyl-gemcitabine with edelfosine resulted in smaller particle size and a new supramolecular conformation, with higher stability and drug content, and ameliorated antitumor profile.


European Journal of Pharmaceutics and Biopharmaceutics